JUMP TO COMMENTS
Previous
Next

FASCINATING FACTS: 10 Mind-Boggling Science Facts

Science fiction writer and futurist Arthur C. Clarke once said, “Any sufficiently advanced technology is indistinguishable from magic.” Though he was talking about technology, science itself can sometimes seem so strange and unbelievable that one might wonder if it can be distinguished from magic either. The same can be said to apply to nature and natural phenomenon. Here are ten such science facts that we believe will elicit the same sense of wonder from you as they did from us.

1. An average cloud weighs 1.1 million pounds, and an average storm cloud weighs 105.8 million pounds.

Cumulus Clouds. Image Source: Piccolo Namek/Wikimedia Commons

Weighing a cloud might seem like an impossible task, but all you need is its approximate volume and density which can be easily determined. Scientists have measured that the cumulus clouds, the white fluffy clouds that we see on days with good weather, have a density of 0.5 gram per cubic meter. Measuring the shadow a cloud casts on land at midday will give us its width, which, according to Peggy LeMone, a researcher at the National Center for Atmospheric Research, is typically a kilometer.

Cumulus clouds are roughly cubical and a kilometer high on an average. So, the average volume of a cumulus cloud is roughly one billion cubic meters. That makes its weight 500 million grams or 1.1 million pounds. That’s about equivalent to 100 elephants, 2,500 donkeys, or 33 apatosauruses. Storm clouds are much denser than cumulus clouds and weigh as much as 105.8 million pounds. A typical North American hurricane weighs 108 billion pounds. (source)

2. Humans possess the protein cryptochrome in their eyes that can detect magnetic fields, but our brains are not equipped with the ability to understand that information.

Cryptochrome Structure and Human Eye. Image Source: Brautigam et. al./Wikimedia CommonsLaitr Keiows/Wikimedia Commons

Cryptochrome is found in the retina of most birds, some animals like foxes, cows, and deer, as well as bats, mole rats, turtles, ants, sharks, and rays. This helps them determine direction and recognize places if there are no landmarks. In humans, there are two types of cryptochromes – CRY and CRY2. While they are involved in controlling our body clocks, CRY2 can also work as a magnetic sensor according to Lauren Foley of the University of Massachusetts.

Foley introduced CRY2 into the retinas of Drosophila flies with the result that it was possible to train them in an artificial magnetic field to move in a specific direction to get food. According to Roswitha Wiltschko, one of the scientists to discover magnetic sense in birds, though CRY2 is very active in the human retina as a light sensor, it might be no good when it comes to detecting magnetic fields. This is because there are no known “pathways that communicate magnetic information to the brain.” Even though there were, it is unclear what use the information could be for humans, unlike the use the information gives to other animals and especially birds. (source)

3. Pure distilled water is not electrically conductive. It is actually the salts and impurities with negative and positive charges that make normal water such an excellent conductor.

Water Drop. Image Source: José Manuel Suárez/Wikimedia Commons

“Pure” water is water that has been thoroughly filtered or processed to get rid of impurities through distillation or deionization as in laboratories. Common methods currently used for purifying water include reverse osmosis, carbon filtering, ultraviolet oxidization, electrodeionization, microfiltration, ultrafiltration, and capacitive filtration. Employing a combination of these methods results in ultra-pure water with trace contaminants as low as a few parts per billion or trillion.

For water to be an effective conductor of electricity there must be positively and negatively charged ions which usually come in the form of salts and impurities present in regular water. When these are removed, the water’s conductivity drops as low as 5.5 × 10−6 S/m (Siemens per meter) and its resistivity goes up to 18 MΩ·cm (megohm-centimeter). The little bit of conductivity is due to the OH– and H3O+ ions that form due to self-ionization of ultra-pure water.

Water of such high purity has various industrial applications, especially in semiconductor, cosmetics and pharmaceutical industries. It is also used to top off lead-acid batteries, cleaning cars and windows as it doesn’t leave spots after drying, in aquariums after adding minerals to keep fish from disease, as well as in aircraft engines when mixed with methanol to extend performance. (source)

4. Scientists believe it was the egg and not the chicken that came first. The first chicken egg was laid by a bird that was not a chicken.

Chicken and Egg. Image Source: USDA

The “chicken or the egg” dilemma is an ancient folk paradox which Aristotle concluded to be an infinite sequence with no true origin. Strictly speaking, however, it is a false dilemma that was presented to have an either/or answer. It becomes much clearer when the Darwinian principle is taken into account.

Before life became terrestrial, most animals laid eggs in the water which prevented them from drying. As more animals began living on the land, the eggs became amniotic over 312 million years ago. These eggs have three layers that protect the embryo and provide nutrients as well as a hard shell encasing everything. So, if the question refers to all eggs in general, then the egg came first as it evolved to survive outside of water.

But if the question specifically refers to the chicken egg, then the answer gets a little more complicated. Scientists don’t clearly know when the mutations in the eggs of domesticated wild jungle fowl caused it to become a chicken. But at some point, after many generations of interbreeding and domestication, an animal similar to a chicken (aka proto-chicken) laid an egg that became the modern chicken. So, according to Neil deGrasse Tyson, “Which came first: the chicken or the egg? The egg – laid by a bird that was not a chicken.” (12)

5. Your shoelaces come undone when you run because the knots experience forces up to 7G that gradually loosens them up.

A research team at the University of California, Berkeley consisting of mechanical engineer Oliver O’Reilly and his colleagues used slow-motion videos of a volunteer running on a treadmill to find out what exactly happens with the shoelaces. What they found is that when the foot strikes the ground, the shoelace experiences a force seven times that of gravity which stretches and relaxes the knot a little. Next, when the foot swings, the tips of the shoelace experience an inertial force and acts like a whip. Together, these two forces unravel the knot.

The team experimented further and found that the rate at which the shoelace becomes undone increases with every stride. They also found that a square knot is far more efficient than a granny knot and fails only half the time while the latter failed every time. (source)

6. When flying, owls make almost no sound even when recorded in a room with microphones.

The wings of owls are quite different from that of other birds. For one, the feathers are larger than average. The edges of the feathers are serrated reducing aerodynamic disturbances and making the flapping motion nearly silent. Another feature is that the feathers are covered with a velvety structure that absorbs the sound of wing movement. What little sound its flight does generate is out of the hearing range of most prey but can be heard by the owl. The silent flight gives the owl an added advantage while hunting at night.

Unfortunately, there is also a downside to this feather adaptation. In order to retain the softness and silent flight, owls cannot use preen oil or powder dust to keep the feathers waterproof. They cannot hunt when the weather is wet. They also often drown in water when they land to drink or bathe but cannot climb out. (source)

7. The black mesh that lines a microwave oven’s door physically blocks the microwaves. It works as a Faraday cage, and the waves are so large they cannot pass through the holes.

Microwave Oven. Image Source: Jean /Wikimedia Commons

Microwaves are a type of electromagnetic radiation between infrared and radio waves with wavelengths ranging from one millimeter to one meter and frequencies 300 GHz to 300 MHz. One of the most common frequencies used for microwave ovens is 2.45 GHz and has a wavelength of 12.2 centimeters. The holes in the black mesh are too small to let the microwaves pass through them.

The oven’s cooking chamber along with the mesh acts as a Faraday cage – an enclosure made of conductive material that acts as a shield that blocks electromagnetic fields. Faraday cages are used to protect sensitive equipment from external radio frequency interference as well as to prevent the radio waves from transmitters from interfering with outside equipment. (12)

8. The human fetus is kept asleep 95% of the time in the womb. The womb has an oxygen content equivalent of the top of Mt. Everest and is designed to keep the baby asleep while it grows.

Baby in Womb. Image Source: lunar caustic/Flickr

The necessary neuronal network for the brain to experience consciousness finishes forming by the third trimester. Even if the baby is born prematurely at this stage, it is equipped to survive with the right medical care. After observing premature babies and various animal fetuses, scientists have found that at least 95% of the time they are in two states of sleep – the active sleep and the quiet sleep. These are similar to rapid-eye-movement (REM) sleep and slow-wave sleep seen in mammals.

During this time, the fetus is actively sedated to keep it sleeping. This is achieved by low oxygen pressure and the warm, cushioned environment of the uterus as well as various neuroinhibitory and sleep-inducing fluids. (source)

9. Liquid oxygen is paramagnetic. It can be moved around and even be suspended between magnetic poles.

Liquid Oxygen. Image Source: Staff Sgt. Jim Araos/U.S. Air Force

Liquid oxygen, also known as LOX, exists between −218.79°C ( −361.82°F) and −182.962°C ( −297.332°F) and is slightly denser than water. The light blue liquid is strongly paramagnetic, and when it is poured into a strong magnetic field, it is suspended. Interestingly, it does not obey Curie’s law which states that the amount of magnetization of a paramagnetic material is directly proportional to the strength of the magnetic field. In 1924, Gilbert N. Lewis predicted it was because of the formation of tetraoxygen molecule (O4), though modern computer simulations show that it is because of the oxygen molecules (O2) with antiparallel spins forming pairs. (source)

10. You see flashes of light when you rub your eyes because the pressure activates visual receptors in you retina. Since the brain can’t tell the difference, it interprets the pressure as if you were seeing lights in front of you. 

Rubbing Eyes. Image Source: Mish Sukharev/Flickr

The phenomenon of seeing flashes or blobs of light is called “phosphene.” Apart from the mechanical stimulation of rubbing, electrical and magnetic stimulation can also cause it. People who meditate for long periods of time, those who are kept in dark cells devoid of visual stimulation, truck drivers, and pilots also report experiencing phosphenes.

A team of scientists from the University of Washington in Seattle and Carnegie Mellon University in Pennsylvania believe this phenomenon can be used to develop mind-to-mind communication technology. In an interesting experiment, they had two subjects (senders) wearing electroencephalography (EEG) electrodes, and one subject (receiver) wearing a transcranial magnetic stimulation (TMS) helmet. Together, the subjects were to play Tetris. The senders must decide the move and communicate it without speaking to the receiver who will make the move.

When the new brick falls, the sender focuses on the icon denoting left or right rotation. The EEG electrode picks up the signal and sends it to the TMS helmet which stimulates a relevant phosphene reaction. The receiver would then make the move accordingly. The test succeeded 81% of the time. (source)

JUMP TO COMMENTS
Previous
Next
Please wait...

And Now... A Few Links From Our Sponsors